Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 80(3): 443-453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38086446

RESUMO

BACKGROUND & AIMS: The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver. They positively regulate each other and their deletion results in primary liver cancer. Here we investigated their roles in primary and secondary liver cancer metastasis. METHODS: We identified common target genes of PHB1 and MAT1A using a metastasis array, and measured promoter activity and transcription factor binding using luciferase reporter assays and chromatin immunoprecipitation, respectively. We examined how PHB1 or MAT1A loss promotes liver cancer metastasis and whether their loss sensitizes to colorectal liver metastasis (CRLM). RESULTS: Matrix metalloproteinase-7 (MMP-7) is a common target of MAT1A and PHB1 and its induction is responsible for increased migration and invasion when MAT1A or PHB1 is silenced. Mechanistically, PHB1 and MAT1A negatively regulate MMP7 promoter activity via an AP-1 site by repressing the MAFG-FOSB complex. Loss of MAT1A or PHB1 also increased MMP-7 in extracellular vesicles, which were internalized by colon and pancreatic cancer cells to enhance their oncogenicity. Low hepatic MAT1A or PHB1 expression sensitized to CRLM, but not if endogenous hepatic MMP-7 was knocked down first, which lowered CD4+ T cells while increasing CD8+ T cells in the tumor microenvironment. Hepatocytes co-cultured with colorectal cancer cells express less MAT1A/PHB1 but more MMP-7. Consistently, CRLM raised distant hepatocytes' MMP-7 expression in mice and humans. CONCLUSION: We have identified a PHB1/MAT1A-MAFG/FOSB-MMP-7 axis that controls primary liver cancer metastasis and sensitization to CRLM. IMPACT AND IMPLICATIONS: Primary and secondary liver cancer metastasis is associated with poor outcomes but whether the liver has underlying defense mechanism(s) against metastasis is unknown. Here we examined the hypothesis that hepatic prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) cooperate to defend the liver against metastasis. Our studies found PHB1 and MAT1A form a complex that suppresses matrix metalloproteinase-7 (MMP-7) at the transcriptional level and loss of either PHB1 or MAT1A sensitizes the liver to metastasis via MMP-7 induction. Strategies that target the PHB1/MAT1A-MMP-7 axis may be a promising approach for the treatment of primary and secondary liver cancer metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/genética , Neoplasias Hepáticas/patologia , Metaloproteinase 7 da Matriz/genética , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Proibitinas , Microambiente Tumoral
2.
Hepatology ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100286

RESUMO

BACKGROUND AND AIMS: Methionine adenosyltransferase alpha1 (MATα1) is responsible for the biosynthesis of S-adenosylmethionine in normal liver. Alcohol consumption enhances MATα1 interaction with peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), which blocks MATα1 mitochondrial targeting, resulting in lower mitochondrial MATα1 content and mitochondrial dysfunction in alcohol-associated liver disease (ALD) in part through upregulation of cytochrome P450 2E1. Conversely, alcohol intake enhances SUMOylation, which enhances cytochrome P450 2E1 expression. MATα1 has potential SUMOylation sites, but whether MATα1 is regulated by SUMOylation in ALD is unknown. Here, we investigated if MATα1 is regulated by SUMOylation and, if so, how it impacts mitochondrial function in ALD. APPROACH AND RESULTS: Proteomics profiling revealed hyper-SUMOylation of MATα1, and prediction software identified lysine 48 (K48) as the potential SUMOylation site in mice (K47 in humans). Experiments with primary hepatocytes, mouse, and human livers revealed that SUMOylation of MAT1α by SUMO2 depleted mitochondrial MATα1. Furthermore, mutation of MATα1 K48 prevented ethanol-induced mitochondrial membrane depolarization, MATα1 depletion, and triglyceride accumulation. Additionally, CRISPR/CRISPR associated protein 9 gene editing of MATα1 at K48 hindered ethanol-induced MATα1-PIN1 interaction, degradation, and phosphorylation of MATα1 in vitro. In vivo, CRISPR/CRISPR associated protein 9 MATα1 K48 gene-edited mice were protected from ethanol-induced fat accumulation, liver injury, MATα1-PIN1 interaction, mitochondrial MATα1 depletion, mitochondrial dysfunction, and low S-adenosylmethionine levels. CONCLUSIONS: Taken together, our findings demonstrate an essential role for SUMOylation of MATα1 K48 for interaction with PIN1 in ALD. Preventing MATα1 K48 SUMOylation may represent a potential treatment strategy for ALD.

4.
Hepatology ; 77(3): 774-788, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908246

RESUMO

BACKGROUND AND AIMS: The sensitivity of current surveillance methods for detecting early-stage hepatocellular carcinoma (HCC) is suboptimal. Extracellular vesicles (EVs) are promising circulating biomarkers for early cancer detection. In this study, we aim to develop an HCC EV-based surface protein assay for early detection of HCC. APPROACH AND RESULTS: Tissue microarray was used to evaluate four potential HCC-associated protein markers. An HCC EV surface protein assay, composed of covalent chemistry-mediated HCC EV purification and real-time immuno-polymerase chain reaction readouts, was developed and optimized for quantifying subpopulations of EVs. An HCC EV ECG score, calculated from the readouts of three HCC EV subpopulations ( E pCAM + CD63 + , C D147 + CD63 + , and G PC3 + CD63 + HCC EVs), was established for detecting early-stage HCC. A phase 2 biomarker study was conducted to evaluate the performance of ECG score in a training cohort ( n  = 106) and an independent validation cohort ( n  = 72).Overall, 99.7% of tissue microarray stained positive for at least one of the four HCC-associated protein markers (EpCAM, CD147, GPC3, and ASGPR1) that were subsequently validated in HCC EVs. In the training cohort, HCC EV ECG score demonstrated an area under the receiver operating curve (AUROC) of 0.95 (95% confidence interval [CI], 0.90-0.99) for distinguishing early-stage HCC from cirrhosis with a sensitivity of 91% and a specificity of 90%. The AUROCs of the HCC EV ECG score remained excellent in the validation cohort (0.93; 95% CI, 0.87-0.99) and in the subgroups by etiology (viral: 0.95; 95% CI, 0.90-1.00; nonviral: 0.94; 95% CI, 0.88-0.99). CONCLUSION: HCC EV ECG score demonstrated great potential for detecting early-stage HCC. It could augment current surveillance methods and improve patients' outcomes.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Biomarcadores Tumorais/análise , Vesículas Extracelulares/química , Proteínas de Membrana , Eletrocardiografia , Glipicanas
5.
Elife ; 112022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193675

RESUMO

Trans-differentiation of hepatic stellate cells (HSCs) to activated state potentiates liver fibrosis through release of extracellular matrix (ECM) components, distorting the liver architecture. Since limited antifibrotics are available, pharmacological intervention targeting activated HSCs may be considered for therapy. A-kinase anchoring protein 12 (AKAP12) is a scaffolding protein that directs protein kinases A/C (PKA/PKC) and cyclins to specific locations spatiotemporally controlling their biological effects. It has been shown that AKAP12's scaffolding functions are altered by phosphorylation. In previously published work, observed an association between AKAP12 phosphorylation and HSC activation. In this work, we demonstrate that AKAP12's scaffolding activity toward the endoplasmic reticulum (ER)-resident collagen chaperone, heat-shock protein 47 (HSP47) is strongly inhibited by AKAP12's site-specific phosphorylation in activated HSCs. CRISPR-directed gene editing of AKAP12's phospho-sites restores its scaffolding toward HSP47, inhibiting HSP47's collagen maturation functions, and HSC activation. AKAP12 phospho-editing dramatically inhibits fibrosis, ER stress response, HSC inflammatory signaling, and liver injury in mice. Our overall findings suggest a pro-fibrogenic role of AKAP12 phosphorylation that may be targeted for therapeutic intervention in liver fibrosis.


Assuntos
Proteínas de Ancoragem à Quinase A , Células Estreladas do Fígado , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Proteínas de Ciclo Celular , Colágeno/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclinas/metabolismo , Modelos Animais de Doenças , Fibrose , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP47/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Fosforilação , Proteína Quinase C/metabolismo
6.
Oncogene ; 40(39): 5866-5879, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34349244

RESUMO

Methionine adenosyltransferase 1A (MAT1A) is a tumor suppressor downregulated in hepatocellular carcinoma and cholangiocarcinoma, two of the fastest rising cancers worldwide. We compared MATα1 (protein encoded by MAT1A) interactome in normal versus cancerous livers by mass spectrometry to reveal interactions with 14-3-3ζ. The MATα1/14-3-3ζ complex was critical for the expression of 14-3-3ζ. Similarly, the knockdown and small molecule inhibitor for 14-3-3ζ (BV02), and ChIP analysis demonstrated the role of 14-3-3ζ in suppressing MAT1A expression. Interaction between MATα1 and 14-3-3ζ occurs directly and is enhanced by AKT2 phosphorylation of MATα1. Blocking their interaction enabled nuclear MATα1 translocation and inhibited tumorigenesis. In contrast, overexpressing 14-3-3ζ lowered nuclear MATα1 levels and promoted tumor progression. However, tumor-promoting effects of 14-3-3ζ were eliminated when liver cancer cells expressed mutant MATα1 unable to interact with 14-3-3ζ. Taken together, the reciprocal negative regulation that MATα1 and 14-3-3ζ exert is a key mechanism in liver tumorigenesis.


Assuntos
Neoplasias Hepáticas , Proteínas 14-3-3 , Animais , Carcinogênese , Carcinoma Hepatocelular , Transformação Celular Neoplásica , Humanos , Metionina Adenosiltransferase , Camundongos
7.
Biomolecules ; 10(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244364

RESUMO

Existing therapeutic strategies for breast cancer are limited by tumor recurrence and drug-resistance. Antioxidant plant-derived compounds such as flavonoids reduce adverse outcomes and have been identified as a potential source of antineoplastic agent with less undesirable side effects. Here, we describe the novel regulation of fatty-acid synthase (FASN), the key enzyme in de novo fatty-acid synthesis, whereby Vitis vinifera L. cv Vermentino leaf hydroalcoholic extract lowers its protein stability that is regulated by small ubiquitin-like modifier (SUMO)ylation. The phenolic compounds characterization was performed by liquid chromatography-mass spectrometry (LC-MS), whereas mass spectrometry (LC-MS/MS), Western blotting/co-immunoprecipitation (Co-IP) and RT-PCR, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenicity assays, and FACS analysis were used to measure the expression of targets and tumorigenicity. Vermentino extract exhibits antitumorigenic effects, and we went on to determine that FASN and ubiquitin-conjugating enzyme 9 (UBC9), the sole E2 enzyme required for SUMOylation, were significantly reduced. Moreover, FASN was found SUMOylated in human breast cancer tissues and cell lines, and lack of SUMOylation caused by SUMO2 silencing reduced FASN protein stability. These results suggest that SUMOylation protects FASN against proteasomal degradation and may exert oncogenic activity through alteration of lipid metabolism, whereas Vermentino extract inhibits these effects which supports the additional validation of the therapeutic value of this compound in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Ácido Graxo Sintase Tipo I/metabolismo , Extratos Vegetais/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Sumoilação/efeitos dos fármacos , Vitis/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Necrose/induzido quimicamente , Folhas de Planta/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Hepatology ; 70(6): 2018-2034, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31077594

RESUMO

Methionine adenosyltransferase α1 (MATα1, encoded by MAT1A) is responsible for hepatic biosynthesis of S-adenosyl methionine, the principal methyl donor. MATα1 also act as a transcriptional cofactor by interacting and influencing the activity of several transcription factors. Mat1a knockout (KO) mice have increased levels of cytochrome P450 2E1 (CYP2E1), but the underlying mechanisms are unknown. The aims of the current study were to identify binding partners of MATα1 and elucidate how MATα1 regulates CYP2E1 expression. We identified binding partners of MATα1 by coimmunoprecipitation (co-IP) and mass spectrometry. Interacting proteins were confirmed using co-IP using recombinant proteins, liver lysates, and mitochondria. Alcoholic liver disease (ALD) samples were used to confirm relevance of our findings. We found that MATα1 negatively regulates CYP2E1 at mRNA and protein levels, with the latter being the dominant mechanism. MATα1 interacts with many proteins but with a predominance of mitochondrial proteins including CYP2E1. We found that MATα1 is present in the mitochondrial matrix of hepatocytes using immunogold electron microscopy. Mat1a KO hepatocytes had reduced mitochondrial membrane potential and higher mitochondrial reactive oxygen species, both of which were normalized when MAT1A was overexpressed. In addition, KO hepatocytes were sensitized to ethanol and tumor necrosis factor α-induced mitochondrial dysfunction. Interaction of MATα1 with CYP2E1 was direct, and this facilitated CYP2E1 methylation at R379, leading to its degradation through the proteasomal pathway. Mat1a KO livers have a reduced methylated/total CYP2E1 ratio. MATα1's influence on mitochondrial function is largely mediated by its effect on CYP2E1 expression. Patients with ALD have reduced MATα1 levels and a decrease in methylated/total CYP2E1 ratio. Conclusion: Our findings highlight a critical role of MATα1 in regulating mitochondrial function by suppressing CYP2E1 expression at multiple levels.


Assuntos
Citocromo P-450 CYP2E1/genética , Metionina Adenosiltransferase/fisiologia , Mitocôndrias Hepáticas/fisiologia , Animais , Feminino , Proteínas de Choque Térmico HSP70/fisiologia , Humanos , Hepatopatias Alcoólicas/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Metilação , Camundongos , Proteínas Mitocondriais/fisiologia , Espécies Reativas de Oxigênio/metabolismo
9.
J Exp Clin Cancer Res ; 38(1): 4, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611309

RESUMO

BACKGROUND: Ethanol abuse promotes breast cancer development, metastasis and recurrence stimulating mammary tumorigenesis by mechanisms that remain unclear. Normally, 35% of breast cancer is Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2)-positive that predisposes to poor prognosis and relapse, while ethanol drinking leads to invasion of their ERBB2 positive cells triggering the phosphorylation status of mitogen-activated protein kinase. StAR-related lipid transfer protein 10 (STARD10) is a lipid transporter of phosphatidylcholine (PC) and phosphatidylethanolamine (PE); changes on membrane composition of PC and PE occur before the morphological tumorigenic events. Interestingly, STARD10 has been described to be highly expressed in 35-40% of ERBB2-positive breast cancers. In this study, we demonstrate that ethanol administration promotes STARD10 and ERBB2 expression that is significantly associated with increased cell malignancy and aggressiveness. MATERIAL AND METHODS: We investigated the effect of ethanol on STARD10-ERBB2 cross-talk in breast cancer cells, MMTV-neu transgenic mice and in clinical ERBB2-positive breast cancer specimens with Western Blotting and Real-time PCR. We also examined the effects of their knockdown and overexpression on transient transfected breast cancer cells using promoter activity, MTT, cell migration, calcium and membrane fluidity assays in vitro. RESULTS: Ethanol administration induces STARD10 and ERBB2 expression in vitro and in vivo. ERBB2 overexpression causes an increase in STARD10 expression, while overexpression of ERBB2's downstream targets, p65, c-MYC, c-FOS or c-JUN induces STARD10 promoter activity, correlative of enhanced ERBB2 function. Ethanol and STARD10-mediated cellular membrane fluidity and intracellular calcium concentration impact ERBB2 signaling pathway as evaluated by enhanced p65 nuclear translocation and binding to both ERBB2 and STARD10 promoters. CONCLUSION: Our finding proved that STARD10 and ERBB2 positively regulate each other's expression and function. Taken together, our data demonstrate that ethanol can modulate ERBB2's function in breast cancer via a novel interplay with STARD10.


Assuntos
Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/metabolismo , Etanol/toxicidade , Fosfoproteínas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Fosfoproteínas/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transfecção
10.
Artigo em Inglês | MEDLINE | ID: mdl-29780898

RESUMO

Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. The large spectrum of protein post-translational modification (PTM) includes numerous critical signaling events that occur during neoplastic transformation. PTMs occur to nearly all proteins and increase the functional diversity of proteins. We have reviewed the role of two major PTMs, SUMOylation and phosphorylation, in the altered signaling of key players in HCC. SUMOylation is a PTM that involves addition of a small ubiquitin-like modifiers (SUMO) group to proteins. It is known to regulate protein stability, protein-protein interactions, trafficking and transcriptional activity. The major pathways that are regulated by SUMOylation and may influence HCC are regulation of transcription, cell growth pathways associated with B-cell lymphoma 2 (Bcl-2) and methionine adenosyltransferases (MAT), oxidative stress pathways [nuclear erythroid 2-related factor 2 (Nrf2)], tumor suppressor pathways (p53), hypoxia-inducible signaling [hypoxia-inducible factor-1 (HIF-1)], glucose and lipid metabolism, nuclear factor kappa B (NF-κB) and ß-Catenin signaling. Phosphorylation is an extensively studied PTM in HCC. The mitogen-activated protein kinase (MAPK), phosphatidyl inositol/AK-strain transforming (PI3K/AKT), and C-SRC pathways have been extensively studied for deregulation of kinases and alteration in signaling of targets through phosphorylation of their substrates. Cross-talk between phosphorylation and SUMOylation is known to influence transcriptional activity of proteins and protein-protein interactions. In HCC, several SUMOylation-dependent phosphorylation events have been studied such as MAPK activation and c-SRC activity that have been reviewed in this work. The drastic effects of site-specific phosphorylation or SUMOylation on enzyme activity of signaling players and its effect on growth and tumorigenesis suggests that these PTMs are novel targets for therapeutic intervention in HCC.

11.
FASEB J ; 32(6): 3278-3288, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401608

RESUMO

Alcohol acts through numerous pathways leading to alcoholic liver disease (ALD). Cytochrome P450 (CYP2E1), an ethanol-inducible enzyme, metabolizes ethanol-producing toxic reactive oxygen species (ROS) and is regulated at the posttranslational level. Small ubiquitin-like modifier (SUMO)ylation is a posttranslational modification that involves the addition of SUMOs, which modulate protein stability, activity, and localization. We demonstrated that ubiquitin-conjugation enzyme 9, the SUMO-conjugating enzyme, is induced in the livers of an intragastric ethanol mouse model. Our aim is to examine whether SUMOylation could regulate ethanol-induced CYP2E1 expression in ALD and to elucidate the molecular mechanism(s). CYP2E1 and UBC9 expression in vitro and in vivo was detected by real-time PCR and immunoblotting/immunostaining. SUMOylation was assayed by mass spectrometry and coimmunoprecipitation. Ubc9 expression was induced in ethanol-fed mouse livers, and silencing inhibited ethanol-mediated CYP2E1 microsomal retention and enzymatic activity. CYP2E1 SUMOylation was found to be induced by ethanol in vitro and in vivo. Ubc9 silencing prevents ethanol-induced lipid accumulation and ROS production. UBC9 was highly expressed in human ALD livers. Finally, we found that lysine 410 is a key SUMOylated residue contributing to CYP2E1 protein stability and activity preventing CYP2E1 SUMOylation. Ethanol-mediated up-regulation of CYP2E1 via SUMOylation enhancing its protein stability and activity and may have important implications in ALD.-Tomasi, M. L., Ramani, K., Ryoo, M., Cossu, C., Floris, A., Murray, B. J., Iglesias-Ara, A., Spissu, Y., Mavila, N. SUMOylation regulates cytochrome P450 2E1 expression and activity in alcoholic liver disease.


Assuntos
Citocromo P-450 CYP2E1/biossíntese , Etanol/efeitos adversos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatopatias Alcoólicas/enzimologia , Sumoilação/efeitos dos fármacos , Animais , Estabilidade Enzimática/efeitos dos fármacos , Etanol/farmacologia , Hepatopatias Alcoólicas/patologia , Camundongos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/patologia , Espécies Reativas de Oxigênio/metabolismo , Enzimas de Conjugação de Ubiquitina/biossíntese
12.
Am J Pathol ; 188(3): 640-655, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29305319

RESUMO

Alcoholic liver injury is associated with hepatic stellate cell (HSC) activation. A-kinase anchoring protein 12 (AKAP12) scaffolds protein kinase C and cyclin-D1, which is regulated by its phosphorylation, and spatiotemporally controls cell proliferation, invasiveness, and chemotaxis. HSC activation induces AKAP12 expression, but the role of AKAP12's scaffolding activity in liver function is unknown. Because AKAP12 phosphorylation is enhanced in ethanol-treated HSCs, we examined AKAP12's scaffolding functions in alcohol-mediated HSC activation and liver injury. AKAP12 expression, interaction, and phosphorylation were assayed in in vitro and in vivo ethanol models and human subjects by real-time PCR, coimmunoprecipitation, immunoblotting, and phosphorylated proteomics/Phos-tag. Ethanol induced AKAP12 phosphorylation in the liver and in primary HSCs, but not in hepatocytes. AKAP12's scaffolding activity for protein kinase C/cyclin-D1 decreased in ethanol-treated HSCs but not hepatocytes. AKAP12 negatively regulated HSC activation, which was reversed by ethanol-mediated AKAP12 phosphorylation. AKAP12 interacted with heat shock protein 47 (HSP47), which chaperones collagen and induces its secretion. Ethanol inhibited AKAP12-HSP47 and induced HSP47-collagen interaction. Ethanol-induced phosphorylated AKAP12 was unable to bind to HSP47 compared with its unphosphorylated counterpart, thereby proving that ethanol-mediated phosphorylation of AKAP12 inhibited the HSP47-AKAP12 scaffold. Silencing AKAP12 facilitated the chaperoning of collagen by HSP47. Hence, AKAP12 scaffolds HSP47 and regulates collagen-HSP47 interaction. Ethanol quenches AKAP12's scaffolding activity through phosphorylation and facilitates HSC activation.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , Animais , Colágeno/metabolismo , Ciclina D1/metabolismo , Etanol/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Camundongos , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo
13.
Oncotarget ; 8(45): 78851-78869, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-29108270

RESUMO

MicroRNA-34a (miR-34a) is down-regulated in colorectal cancers (CRC) and required for interleukin-6 (IL-6)-induced CRC metastasis. Mice lacking miR-34a developed more invasive cancer in a colitis-associated cancer model. In the same model, S-adenosylmethionine (SAMe) and methylthioadenosine (MTA) inhibited IL-6/STAT3 and lowered tumor burden. SAMe and MTA reduce the expression of methionine adenosyltransferase 2A (MAT2A) and there are consensus binding sites for miR-34a/b in the MAT2A 3'UTR. Here we examined whether SAMe/MTA influence miR-34a/b expression and cancer metastasis. We found SAMe and MTA raised miR-34a/b expression in CRC cell lines, inhibited migration and invasion in vitro and liver metastasis in vivo. Like CRC, MAT2A and MAT2B expression is induced in human pancreas and prostate cancers. Treatment with SAMe, MTA, miR-34a or miR-34b inhibited MAT2A expression mainly at the protein level. MAT2B protein level also fell because MAT2A and MAT2B enhance each other's protein stability. Overexpressing miR-34a or miR-34b inhibited while MAT2A or MAT2B enhanced CRC migration and invasion. Co-expressing either miR-34a/b had minimal to no effect on MAT2A/MAT2B's ability to increase migration, invasion and growth. Taken together, MAT2A and MAT2B are important targets of miR-34a/b and SAMe and MTA target this axis, suppressing MAT2A/MAT2B while raising miR-34a/b expression, inhibiting cancer metastasis.

14.
Am J Pathol ; 186(9): 2326-36, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27561301

RESUMO

Lipopolysaccharide (LPS), a bacterial endotoxin, induces inflammation in macrophages via activation of NF-κB signaling. Sumoylation is a post-translational modification mediated by the small ubiquitin-like modifier, SUMO. Ubiquitin-conjugating enzyme 9 (UBC9) is the only known SUMO conjugating enzyme. LPS treatment lowers SUMO-1 and UBC9 mRNA levels in primary astrocytes. UBC9 can degrade NF-κB inhibitor α (Ikbα) via a SUMO2/3-ubiquitin pathway. However, UBC9 may also promote Ikbα stability by SUMO-1 conjugation that further regulates NF-κB signaling. The role of UBC9 in liver inflammation is unknown. We reported that CDK1-mediated phosphorylation of UBC9 enhanced its stability. Herein, we describe an anti-inflammatory role of UBC9 that is lost when it is phosphorylated during inflammation. LPS exposure caused induction in UBC9 phosphorylation and CDK1 activation specifically in Kupffer cells in vivo and in RAW264.7 macrophages in vitro. Silencing or overexpression experiments in vitro and in vivo showed that UBC9 was required to blunt the proinflammatory response elicited by LPS. LPS stimulation raised the binding of phospho-UBC9 but not the unphosphorylated counterpart, to Ikbα in RAW264.7 macrophages. Hence, phospho-UBC9 may promote NF-κB signaling by regulating Ikbα and this may be a novel mechanism that deregulates liver inflammatory signaling.


Assuntos
Hepatite/metabolismo , Inflamação/metabolismo , Transdução de Sinais/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Western Blotting , Endotoxinas/toxicidade , Ensaio de Imunoadsorção Enzimática , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Reação em Cadeia da Polimerase , Células RAW 264.7 , Transfecção
15.
Oncotarget ; 6(35): 37706-23, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26416353

RESUMO

Ubiquitin-conjugating enzyme 9 (Ubc9) is required for sumoylation and inhibits apoptosis via Bcl-2 by unknown mechanism. Methionine adenosyltransferase 2A (MAT2A) encodes for MATα2, the catalytic subunit of the MATII isoenzyme that synthesizes S-adenosylmethionine (SAMe). Ubc9, Bcl-2 and MAT2A expression are up-regulated in several malignancies. Exogenous SAMe decreases Ubc9 and MAT2A expression and is pro-apoptotic in liver and colon cancer cells. Here we investigated whether there is interplay between Ubc9, MAT2A and Bcl-2. We used human colon and liver cancer cell lines RKO and HepG2, respectively, and confirmed key finding in colon cancer specimens. We found MATα2 can regulate Bcl-2 expression at multiple levels. MATα2 binds to Bcl-2 promoter to activate its transcription. This effect is independent of SAMe as MATα2 catalytic mutant was also effective. MATα2 also directly interacts with Bcl-2 to enhance its protein stability. MATα2's effect on Bcl-2 requires Ubc9 as MATα2's stability is influenced by sumoylation at K340, K372 and K394. Overexpressing wild type (but not less stable MATα2 sumoylation mutants) protected from 5-fluorouracil-induced apoptosis in both colon and liver cancer cells. Colon cancer have higher levels of sumoylated MATα2, total MATα2, Ubc9 and Bcl-2 and higher MATα2 binding to the Bcl-2 P2 promoter. Taken together, Ubc9's protective effect on apoptosis may be mediated at least in part by sumoylating and stabilizing MATα2 protein, which in turn positively maintains Bcl-2 expression. These interactions feed forward to further enhance growth and survival of the cancer cell.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias Hepáticas/metabolismo , Metionina Adenosiltransferase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Imunoprecipitação da Cromatina , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/genética , Dados de Sequência Molecular , Mutação/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , S-Adenosilmetionina/farmacologia , Sumoilação/efeitos dos fármacos , Ativação Transcricional , Células Tumorais Cultivadas , Enzimas de Conjugação de Ubiquitina/genética
16.
J Cell Physiol ; 230(5): 1075-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25294683

RESUMO

Myofibroblastic trans-differentiation of hepatic stellate cells (HSCs) is an essential event in the development of liver fibrogenesis. These changes involve modulation of key regulators of the genome and the proteome. Methionine adenosyltransferases (MAT) catalyze the biosynthesis of the methyl donor, S-adenosylmethionine (SAMe) from methionine. We have previously shown that two MAT genes, MAT2A and MAT2B (encoding MATα2 and MATß proteins respectively), are required for HSC activation and loss of MAT2A transcriptional control favors its up-regulation during trans-differentiation. Hence MAT genes are intrinsically linked to the HSC machinery during activation. In the current study, we have identified for the first time, post-translational modifications in the MATα2 and MATß proteins that stabilize them and favor human HSC trans-differentiation. Culture-activation of human HSCs induced the MATα2 and MATß proteins. Using mass spectrometry, we identified phosphorylation sites in MATα2 and MATß predicted to be phosphorylated by mitogen-activated protein kinase (MAPK) family members (ERK1/2, V-Raf Murine Sarcoma Viral Oncogene Homolog B1 [B-Raf], MEK). Phosphorylation of both proteins was enhanced during HSC activation. Blocking MEK activation lowered the phosphorylation and stability of MAT proteins without influencing their mRNA levels. Silencing ERK1/2 or B-Raf lowered the phosphorylation and stability of MATß but not MATα2. Reversal of the activated human HSC cell line, LX2 to quiescence lowered phosphorylation and destabilized MAT proteins. Mutagenesis of MATα2 and MATß phospho-sites destabilized them and prevented HSC trans-differentiation. The data reveal that phosphorylation of MAT proteins during HSC activation stabilizes them thereby positively regulating trans-differentiation.


Assuntos
Transdiferenciação Celular , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/enzimologia , Metionina Adenosiltransferase/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Estabilidade Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inativação Gênica , Humanos , Metionina Adenosiltransferase/química , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese/genética , Mutação/genética , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas B-raf/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
17.
Free Radic Biol Med ; 68: 148-58, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24296246

RESUMO

Endotoxemia correlates with the degree of liver failure and may participate in worsening of liver diseases. Lipopolysaccharide (LPS; synonymous with endotoxin) treatment in mice lowered the hepatic glutathione (GSH) level, which in turn is a variable that determines susceptibility to LPS-induced injury. We previously showed that LPS treatment in mice lowered hepatic expression of the rate-limiting enzyme in GSH synthesis, glutamate-cysteine ligase (GCL). The aim of our current work was to determine the molecular mechanism(s) responsible for these changes. Studies were done using RAW cells (murine macrophages), in vivo LPS-treated mice, and mouse hepatocytes. We found that LPS treatment lowered GCL catalytic and modifier (Gclc and Gclm) subunit expression at the transcriptional level, which was unrelated to alterations in nitric oxide production or induction of NF-κB/p65 subunit. The key mechanism was a decrease in sumoylation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafG, which is required for their heterodimerization and subsequent binding and trans-activation of the antioxidant-response element (ARE) present in the promoter region of these genes that is essential for their expression. LPS treatment lowered markedly the expression of ubiquitin-conjugating enzyme 9 (Ubc9), which is required for sumoylation. Similar findings also occurred in liver after in vivo LPS treatment and in LPS-treated mouse hepatocytes. Overexpression of Ubc9 protected against LPS-mediated inhibition of Gclc and Gclm expression in RAW cells and hepatocytes. In conclusion, LPS-mediated lowering of GCL expression in hepatocytes and macrophages is due to lowering of sumoylation of Nrf2 and MafG, leading to reduced heterodimerization, binding, and trans-activation of ARE.


Assuntos
Glutamato-Cisteína Ligase/biossíntese , Glutationa/biossíntese , Falência Hepática/metabolismo , NF-kappa B/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica , Glutamato-Cisteína Ligase/genética , Glutationa/antagonistas & inibidores , Glutationa/genética , Lipopolissacarídeos/toxicidade , Falência Hepática/induzido quimicamente , Falência Hepática/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Fator de Transcrição MafG/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Sumoilação
18.
Exp Cell Res ; 319(12): 1902-1911, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23588207

RESUMO

Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70-75%, increased apoptosis and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias Hepáticas/metabolismo , Metionina Adenosiltransferase/metabolismo , Putrescina/metabolismo , Idoso , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/enzimologia , Feminino , Humanos , Neoplasias Hepáticas/enzimologia , Masculino , Metionina Adenosiltransferase/genética , Pessoa de Meia-Idade , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Interferente Pequeno , S-Adenosilmetionina/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica
19.
Neuropharmacology ; 70: 268-77, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23462228

RESUMO

Compelling evidence has documented the anxiolytic and mood-enhancing properties of cannabis. In susceptible users, however, consumption of this drug is conducive to panic, paranoia and dysphoria. We hypothesized that the up-regulation of CB1 receptors (CB1Rs) in select brain regions may enhance the vulnerability to cannabinoid-induced anxiety. To test this possibility, we assessed the behavioral impact of a potent cannabinoid agonist (CP55,940; 0.05-0.1 mg/kg, IP) on C57BL/6 male mice, respectively subjected to a prolonged pre-treatment of either the selective CB1R antagonist/inverse agonist AM251 (1 mg/kg/day IP, for 21 days, followed by a 3-day clearance period before testing) or its vehicle (VEH1). Anxiety-like responses were studied in the novel open field, elevated plus maze (EPM) and social interaction assays. While CP55,940 induced anxiolytic-like effects in the EPM in VEH1-exposed animals, it elicited opposite actions in AM251-exposed mice. In this last group, CP55,940 also reduced rearing and social interaction in comparison to its vehicle (VEH2). The divergent effects of CP55,940 in AM251- and VEH1-pretreated animals were confirmed in 129SvEv mice. Immunoblotting analyses on brain samples of C57BL/6 mice revealed that AM251 pre-treatment caused a significant up-regulation of CB1R expression in the prefrontal cortex and striatum, but also a down-regulation of these receptors in the hippocampus and midbrain. Notably, CB1R levels in the prefrontal cortex were negatively correlated with anxiolysis-related indices in the EPM; furthermore, midbrain CB1R expression was positively correlated with the total duration of social interaction. These results suggest that regional variations in brain CB1R expression may differentially condition the behavioral effects of cannabinoids with respect to anxiety-related responses.


Assuntos
Ansiedade/induzido quimicamente , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Animais , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cicloexanóis/farmacologia , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Interações Medicamentosas , Masculino , Camundongos , Piperidinas/antagonistas & inibidores , Piperidinas/farmacologia , Pirazóis/antagonistas & inibidores , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Regulação para Cima/efeitos dos fármacos
20.
Gastroenterology ; 144(7): 1530-1542.e12, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23419361

RESUMO

BACKGROUND & AIMS: Cancer cells often lose contact inhibition to undergo anchorage-independent proliferation and become resistant to apoptosis by inactivating the Hippo signaling pathway, resulting in activation of the transcriptional co-activator yes-associated protein (YAP). However, the oncogenic mechanisms of YAP activity are unclear. METHODS: By using cross-species analysis of expression data, the Notch ligand Jagged-1 (Jag-1) was identified as a downstream target of YAP in hepatocytes and hepatocellular carcinoma (HCC) cells. We analyzed the functions of YAP in HCC cells via overexpression and RNA silencing experiments. We used transgenic mice that overexpressed a constitutively activated form of YAP (YAP(S127A)), and measured protein levels in HCC, colorectal and pancreatic tumor samples from patients. RESULTS: Human HCC cell lines and mouse hepatocytes that overexpress YAP(S127A) up-regulated Jag-1, leading to activation of the Notch pathway and increased proliferation. Induction of Jag-1, activation of Notch, and cell proliferation required binding of YAP to its transcriptional partner TEA domain family member 4 (TEAD4); TEAD4 binding required the Mst1/2 but not ß-catenin signaling. Levels of YAP correlated with Jag-1 expression and Notch signaling in human tumor samples and correlated with shorter survival times of patients with HCC or colorectal cancer. CONCLUSIONS: The transcriptional regulator YAP up-regulates Jag-1 to activate Notch signaling in HCC cells and mouse hepatocytes. YAP-dependent activity of Jag-1 and Notch correlate in human HCC and colorectal tumor samples with patient survival times, suggesting the use of YAP and Notch inhibitors as therapeutics for gastrointestinal cancer. Transcript profiling: microarray information was deposited at the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jxepvsumwosqkve&acc=GSE35004).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/fisiologia , Hepatócitos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Neoplasias Hepáticas/genética , Proteínas de Membrana/fisiologia , Proteínas Musculares/fisiologia , Fosfoproteínas/fisiologia , Receptores Notch/fisiologia , Fatores de Transcrição/fisiologia , Animais , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Jagged-1 , Neoplasias Hepáticas/metabolismo , Camundongos , Proteínas Serrate-Jagged , Fatores de Transcrição de Domínio TEA , Regulação para Cima , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...